Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Respir J ; 62(3)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442582

RESUMO

BACKGROUND: Epithelial damage, repair and remodelling are critical features of chronic airway diseases including chronic obstructive pulmonary disease (COPD). Interleukin (IL)-33 released from damaged airway epithelia causes inflammation via its receptor, serum stimulation-2 (ST2). Oxidation of IL-33 to a non-ST2-binding form (IL-33ox) is thought to limit its activity. We investigated whether IL-33ox has functional activities that are independent of ST2 in the airway epithelium. METHODS: In vitro epithelial damage assays and three-dimensional, air-liquid interface (ALI) cell culture models of healthy and COPD epithelia were used to elucidate the functional role of IL-33ox. Transcriptomic changes occurring in healthy ALI cultures treated with IL-33ox and COPD ALI cultures treated with an IL-33-neutralising antibody were assessed with bulk and single-cell RNA sequencing analysis. RESULTS: We demonstrate that IL-33ox forms a complex with receptor for advanced glycation end products (RAGE) and epidermal growth factor receptor (EGFR) expressed on airway epithelium. Activation of this alternative, ST2-independent pathway impaired epithelial wound closure and induced airway epithelial remodelling in vitro. IL-33ox increased the proportion of mucus-producing cells and reduced epithelial defence functions, mimicking pathogenic traits of COPD. Neutralisation of the IL-33ox pathway reversed these deleterious traits in COPD epithelia. Gene signatures defining the pathogenic effects of IL-33ox were enriched in airway epithelia from patients with severe COPD. CONCLUSIONS: Our study reveals for the first time that IL-33, RAGE and EGFR act together in an ST2-independent pathway in the airway epithelium and govern abnormal epithelial remodelling and muco-obstructive features in COPD.


Assuntos
Interleucina-33 , Doença Pulmonar Obstrutiva Crônica , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/genética , Interleucina-33/metabolismo , Oxirredução , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo
2.
J Allergy Clin Immunol ; 152(1): 107-116.e4, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36907566

RESUMO

BACKGROUND: Airway hyperresponsiveness is a hallmark of asthma across asthma phenotypes. Airway hyperresponsiveness to mannitol specifically relates to mast cell infiltration of the airways, suggesting inhaled corticosteroids to be effective in reducing the response to mannitol, despite low levels of type 2 inflammation. OBJECTIVE: We sought to investigate the relationship between airway hyperresponsiveness and infiltrating mast cells, and the response to inhaled corticosteroid treatment. METHODS: In 50 corticosteroid-free patients with airway hyperresponsiveness to mannitol, mucosal cryobiopsies were obtained before and after 6 weeks of daily treatment with 1600 µg of budesonide. Patients were stratified according to baseline fractional exhaled nitric oxide (Feno) with a cutoff of 25 parts per billion. RESULTS: Airway hyperresponsiveness was comparable at baseline and improved equally with treatment in both patients with Feno-high and Feno-low asthma: doubling dose, 3.98 (95% CI, 2.49-6.38; P < .001) and 3.85 (95% CI, 2.51-5.91; P < .001), respectively. However, phenotypes and distribution of mast cells differed between the 2 groups. In patients with Feno-high asthma, airway hyperresponsiveness correlated with the density of chymase-high mast cells infiltrating the epithelial layer (ρ, -0.42; P = .04), and in those with Feno-low asthma, it correlated with the density in the airway smooth muscle (ρ, -0.51; P = .02). The improvement in airway hyperresponsiveness after inhaled corticosteroid treatment correlated with a reduction in mast cells, as well as in airway thymic stromal lymphopoietin and IL-33. CONCLUSIONS: Airway hyperresponsiveness to mannitol is related to mast cell infiltration across asthma phenotypes, correlating with epithelial mast cells in patients with Feno-high asthma and with airway smooth muscle mast cells in patients with Feno-low asthma. Treatment with inhaled corticosteroids was effective in reducing airway hyperresponsiveness in both groups.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Mastócitos/metabolismo , Óxido Nítrico/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Corticosteroides/uso terapêutico , Hipersensibilidade Respiratória/tratamento farmacológico , Manitol , Fenótipo
3.
J Innate Immun ; : 1-16, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35998572

RESUMO

Contrasting the antigen-presenting dendritic cells (DCs) in the conducting airways, the alveolar DC populations in human lungs have remained poorly investigated. Consequently, little is known about how alveolar DCs are altered in diseases such as chronic obstructive pulmonary disease (COPD). This study maps multiple tissue DC categories in the distal lung across COPD severities. Specifically, single-multiplex immunohistochemistry was applied to quantify langerin/CD207+, CD1a+, BDCA2+, and CD11c+ subsets in distal lung compartments from patients with COPD (GOLD stage I-IV) and never-smoking and smoking controls. In the alveolar parenchyma, increased numbers of CD1a+langerin- (p < 0.05) and BDCA-2+ DCs (p < 0.001) were observed in advanced COPD compared with controls. Alveolar CD11c+ DCs also increased in advanced COPD (p < 0.01). In small airways, langerin+ and BDCA-2+ DCs were also significantly increased. Contrasting the small airway DCs, most alveolar DC subsets frequently extended luminal protrusions. Importantly, alveolar and small airway langerin+ DCs in COPD lungs displayed site-specific marker profiles. Further, multiplex immunohistochemistry with single-cell quantification was used to specifically profile langerin DCs and reveal site-specific expression patterns of the maturation and activation markers S100, fascin, MHC2, and B7. Taken together, our results show that clinically advanced COPD is associated with increased levels of multiple alveolar DC populations exhibiting features of both adaptive and innate immunity phenotypes. This expansion is likely to contribute to the distal lung immunopathology in COPD patients.

4.
EBioMedicine ; 83: 104229, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36027872

RESUMO

BACKGROUND: Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19. METHODS: We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed. FINDINGS: Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production. INTERPRETATION: Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments. FUNDING: CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.


Assuntos
COVID-19 , Citocinas , Humanos , Pulmão/patologia , SARS-CoV-2
5.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35350284

RESUMO

Background: In vivo studies of airway pathology in obstructive lung disease are limited by poor quality of specimens obtained with forceps. Obtainment of cryobiopsies has increased diagnostic yield in cancer and interstitial lung disease but has not been used in patients with asthma. In a recent pilot study, we found mucosal cryobiopsies to be larger and more intact than conventional forceps biopsies. The aim of the present study was to compare quality and safety of mucosal cryobiopsies versus conventional forceps biopsies in patients with asthma. Methods: Endobronchial biopsies were obtained with forceps and cryoprobe from patients with asthma not currently treated with inhaled steroids and evaluated histologically. Results: A total of 240 cryobiopsies and 288 forceps biopsies were obtained from 48 patients. Bleeding from the biopsy site was common but self-limiting. No major complications related to the procedure were seen. Cryobiopsy cross areas were four times larger compared with forceps. Stretches of intact epithelium were detected in all cryobiopsies compared to 33% in forceps biopsies. Further, the length of intact epithelium was on average four times longer in the cryobiopsies. Importantly, there was a good preservation of both antigens and mRNA in the cryobiopsies ensuring a suitability and robustness for immunohistochemistry and in situ hybridisation. Conclusion: Obtainment of mucosal cryobiopsies in patients with asthma is safe and yields biopsies that are significantly larger and morphologically better preserved compared with traditional forceps biopsies. The cryotechnique thus seems to be a promising tool for future in vivo studies of airway pathology.

6.
Respir Res ; 22(1): 158, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022896

RESUMO

BACKGROUND: RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. METHODS: IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. RESULTS: We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. CONCLUSION: These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Interleucina-17/metabolismo , Interleucinas/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Células Th17/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pyroglyphidae/imunologia , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Adulto Jovem
7.
Cells ; 10(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546258

RESUMO

The mast cell granule metalloprotease CPA3 is proposed to have important tissue homeostatic functions. However, the basal CPA3 mRNA and protein expression among mast cell populations has remained poorly investigated. Using a novel histology-based methodology that yields quantitative data on mRNA and protein expression at a single-cell level, the present study maps CPA3 mRNA and protein throughout the MCT and MCTC populations in healthy skin, gut and lung tissues. MCTC cells had both a higher frequency of CPA3 protein-containing cells and a higher protein-staining intensity than the MCT population. Among the tissues, skin MCs had highest CPA3 protein intensity. The expression pattern at the mRNA level was reversed. Lung mast cells had the highest mean CPA3 mRNA staining. Intriguingly, the large alveolar MCT population, that lack CPA3 protein, had uniquely high CPA3 mRNA intensity. A broader multi-tissue RNA analysis confirmed the uniquely high CPA3 mRNA quantities in the lung and corroborated the dissociation between chymase and CPA3 at the mRNA level. Taken together, our novel data suggest a hitherto underestimated contribution of mucosal-like MCT to baseline CPA3 mRNA production. The functional consequence of this high constitutive expression now reveals an important area for further research.


Assuntos
Carboxipeptidases/metabolismo , Quimases/metabolismo , Mastócitos/metabolismo , RNA Mensageiro/metabolismo , Triptases/metabolismo , Humanos
8.
Eur Respir J ; 55(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32060064

RESUMO

Although elevated blood or sputum eosinophils are present in many patients with COPD, uncertainties remain regarding the anatomical distribution pattern of lung-infiltrating eosinophils. Basophils have remained virtually unexplored in COPD. This study mapped tissue-infiltrating eosinophils, basophils and eosinophil-promoting immune mechanisms in COPD-affected lungs.Surgical lung tissue and biopsies from major anatomical compartments were obtained from COPD patients with severity grades Global Initiative for Chronic Obstructive Lung Disease stages I-IV; never-smokers/smokers served as controls. Automated immunohistochemistry and in situ hybridisation identified immune cells, the type 2 immunity marker GATA3 and eotaxins (CCL11, CCL24).Eosinophils and basophils were present in all anatomical compartments of COPD-affected lungs and increased significantly in very severe COPD. The eosinophilia was strikingly patchy, and focal eosinophil-rich microenvironments were spatially linked with GATA3+ cells, including type 2 helper T-cell lymphocytes and type 2 innate lymphoid cells. A similarly localised and interleukin-33/ST2-dependent eosinophilia was demonstrated in influenza-infected mice. Both mice and patients displayed spatially confined eotaxin signatures with CCL11+ fibroblasts and CCL24+ macrophages.In addition to identifying tissue basophilia as a novel feature of advanced COPD, the identification of spatially confined eosinophil-rich type 2 microenvironments represents a novel type of heterogeneity in the immunopathology of COPD that is likely to have implications for personalised treatment.


Assuntos
Basófilos/imunologia , Eosinófilos/imunologia , Macrófagos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Eosinofilia Pulmonar/etiologia , Adulto , Idoso , Animais , Biomarcadores , Quimiocina CCL11/imunologia , Quimiocina CCL24/imunologia , Feminino , Fator de Transcrição GATA3/imunologia , Humanos , Imunidade Inata , Masculino , Camundongos , Pessoa de Meia-Idade , Fumantes , Adulto Jovem
9.
J Allergy Clin Immunol ; 144(6): 1624-1637.e10, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562870

RESUMO

BACKGROUND: Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations. OBJECTIVE: We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations. METHODS: Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype. RESULTS: We show that lung IL-33 drives inflammation and remodeling beyond the type 2 response classically associated with IL-33 signaling. IL-33 blockade with an IL-33 neutralizing antibody normalized established inflammation and improved remodeling of both the lung epithelium and lung parenchyma. Specifically, IL-33 blockade normalized persisting and exacerbating inflammatory end points, including eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration. Importantly, we identified a key role for IL-33 in driving lung remodeling because anti-IL-33 also re-established the presence of ciliated cells over mucus-producing cells and decreased myofibroblast numbers, even in the context of continuous allergen exposure, resulting in improved lung function. CONCLUSION: Overall, this study shows that increased IL-33 levels drive a self-perpetuating amplification loop that maintains the lung in a state of lasting inflammation and remodeled tissue primed for exacerbations. Thus IL-33 blockade might ameliorate symptoms and prevent exacerbations by quelling persistent inflammation and airway remodeling.


Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Interleucina-33/imunologia , Pulmão/imunologia , Pyroglyphidae/imunologia , Transdução de Sinais/imunologia , Animais , Asma/induzido quimicamente , Asma/patologia , Asma/terapia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Interleucina-33/antagonistas & inibidores , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Células Th2/imunologia , Células Th2/patologia
10.
Biosci Rep ; 39(2)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30760632

RESUMO

G protein-coupled receptor 30 (GPR30), or G protein-coupled estrogen receptor (GPER), is a G protein-coupled receptor (GPCR) that is currently attracting considerable attention in breast cancer and cardiometabolic regulation. The receptor was reported to be a novel membrane estrogen receptor mediating rapid non-genomic responses. However, questions remain about both the cognate ligand and the subcellular localization of receptor activity. Here, we used human embryonic kidney (HEK) 293 (HEK293) cells ectopically expressing N-terminally FLAG-tagged human GPR30 and three unique antibodies (Ab) specifically targetting the receptor N-terminal domain (N-domain) to investigate the role of N-glycosylation in receptor maturation and activity, the latter assayed by constitutive receptor-stimulated extracellular-regulated protein kinase (ERK) 1/2 (ERK1/2) activity. GPR30 expression was complex with receptor species spanning from approximately 40 kDa to higher molecular masses and localized in the endoplasmatic reticulum (ER), the plasma membrane (PM), and endocytic vesicles. The receptor contains three conserved asparagines, Asn25, Asn32, and Asn44, in consensus N-glycosylation motifs, all in the N-domain, and PNGase F treatment showed that at least one of them is N-glycosylated. Mutating Asn44 to isoleucine inactivated the receptor, yielding a unique receptor species at approximately 20 kDa that was recognized by Ab only in a denatured state. On the other hand, mutating Asn25 or Asn32 either individually or in combination, or truncating successively N-domain residues 1-42, had no significant effect either on receptor structure, maturation, or activity. Thus, Asn44 in the GPR30 N-domain is required for receptor structure and activity, whereas N-domain residues 1-42, including specifically Asn25 and Asn32, do not play any major structural or functional role(s).


Assuntos
Asparagina/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Asparagina/análise , Glicosilação , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/análise , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/análise , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Conformação Proteica , Domínios Proteicos , Receptores de Estrogênio/análise , Receptores Acoplados a Proteínas G/análise
11.
Clin Exp Allergy ; 49(1): 27-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30244522

RESUMO

BACKGROUND: Investigating disease mechanisms and treatment responses in obstructive airway diseases with invasive sampling are hampered by the small size and mechanical artefacts that conventional forceps biopsies suffer from. Endoscopic cryobiopsies are larger and more intact and are being increasingly used. However, the technique has not yet been explored for obtaining mucosa biopsies. OBJECTIVE: To investigate differences in size and quality of endobronchial mucosal biopsies obtained with cryotechnique and forceps. Further, to check for eligibility of cryobiopsies to be evaluated with immunohistochemistry and in situ hybridization and to investigate tolerability and safety of the technique. METHODS: Endobronchial mucosal biopsies were obtained with cryotechnique and forceps from patients with haemoptysis undergoing bronchoscopy and evaluated by quantitative morphometry, automated immunohistochemistry and in situ hybridization. RESULTS: A total of 40 biopsies were obtained from 10 patients. Cross-sectional areas were threefold larger in cryobiopsies (median: 3.08 mm2 (IQR: 1.79) vs 1.03 mm2 (IQR: 1.10), P < 0.001). Stretches of intact epithelium were 8-fold longer (median: 4.61 mm (IQR: 4.50) vs 0.55 mm (IQR: 1.23), P = 0.001). Content of glands (median: 0.095 mm2 (IQR: 0.30) vs 0.00 mm2 (IQR: 0.01), P = 0.002) and airway smooth muscle (median: 0.25 mm2 (IQR: 0.30) vs 0.060 mm2 (IQR: 0.11), P = 0.02) was higher in the cryobiopsies compared with forceps biopsies. Further, the cryobiopsies had well-preserved protein antigens and mRNA. Mild to moderate bleeding was the only complication observed. CONCLUSION AND CLINICAL RELEVANCE: By yielding significantly larger and more intact biopsies, the cryotechnique represents a valuable new research tool to explore the bronchi in airway disease. Ultimately with the potential to create better understanding of underlying disease mechanisms and improvement of treatments.


Assuntos
Asma , Broncoscopia , Doença Pulmonar Obstrutiva Crônica , Mucosa Respiratória , Adulto , Idoso , Asma/diagnóstico , Asma/metabolismo , Asma/patologia , Biópsia , Estudos Transversais , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
12.
Sci Rep ; 8(1): 3363, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463838

RESUMO

Interleukin (IL)-33 is an IL-1 family alarmin released from damaged epithelial and endothelial barriers to elicit immune responses and allergic inflammation via its receptor ST2. Serine proteases released from neutrophils, mast cells and cytotoxic lymphocytes have been proposed to process the N-terminus of IL-33 to enhance its activity. Here we report that processing of full length IL-33 can occur in mice deficient in these immune cell protease activities. We sought alternative mechanisms for the proteolytic activation of IL-33 and discovered that exogenous allergen proteases and endogenous calpains, from damaged airway epithelial cells, can process full length IL-33 and increase its alarmin activity up to ~60-fold. Processed forms of IL-33 of apparent molecular weights ~18, 20, 22 and 23 kDa, were detected in human lungs consistent with some, but not all, proposed processing sites. Furthermore, allergen proteases degraded processed forms of IL-33 after cysteine residue oxidation. We suggest that IL-33 can sense the proteolytic and oxidative microenvironment during tissue injury that facilitate its rapid activation and inactivation to regulate the duration of its alarmin function.


Assuntos
Alarminas/metabolismo , Alérgenos/metabolismo , Imunidade Inata , Interleucina-33/metabolismo , Necrose/patologia , Proteólise , Mucosa Respiratória/patologia , Animais , Calpaína/metabolismo , Linhagem Celular , Humanos , Interleucina-33/química , Pulmão/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Peso Molecular
13.
Immun Inflamm Dis ; 5(3): 300-309, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28497614

RESUMO

BACKGROUND: Th2 cytokines like interleukin-4, -5, and -13 are regarded as important drivers of the immunopathology underlying allergic rhinitis (AR) and asthma. The present study explores the capacity of pentosan polysulfate sodium (PPS), a semi-synthetic heparin-like macromolecular carbohydrate, to bind Th2 cytokines and exert biological neutralization in vitro, as well as anti-inflammatory actions in vivo. METHODOLOGY: The capacity of PPS to bind recombinant Th2 cytokines was tested with surface plasmon resonance (SPR) technology and biological Th2 neutralization was assessed by Th2-dependent proliferation assays. The in vivo anti-inflammatory action of PPS was studied using a validated Guinea-pig model of AR. RESULTS: Binding studies revealed a strong and specific binding of PPS to IL-4, IL-5, and IL-13 with IC values suggesting as stronger cytokine binding than for heparin. Cytokine binding translated to a biological neutralization as PPS dose dependently inhibited Th2-dependent cell proliferation. Topical administration of PPS 30 min prior to nasal allergen challenge of sensitized animals significantly reduced late phase plasma extravasation, luminal influx of eosinophils, neutrophils, and total lavage leukocytes. Similar, albeit not statistically secured, effects were found for tissue leukocytes and mucus hyper-secretion. The anti-inflammatory effects of PPS compared favorably with established topical nasal steroid treatment. CONCLUSION: This study points out PPS as a potent Th2 cytokine-binding molecule with biological neutralization capacity and broad anti-inflammatory effects in vivo. As such PPS fulfills the role as a potential candidate molecule for the treatment of AR and further studies of clinical efficacy seems highly warranted.


Assuntos
Citocinas/antagonistas & inibidores , Poliéster Sulfúrico de Pentosana/farmacologia , Rinite Alérgica/tratamento farmacológico , Células Th2/imunologia , Animais , Citocinas/imunologia , Cobaias , Humanos , Rinite Alérgica/imunologia , Rinite Alérgica/patologia , Células Th2/patologia
15.
Nat Immunol ; 17(6): 626-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111143

RESUMO

Innate lymphoid cells (ILCs) are critical mediators of mucosal immunity, and group 1 ILCs (ILC1 cells) and group 3 ILCs (ILC3 cells) have been shown to be functionally plastic. Here we found that group 2 ILCs (ILC2 cells) also exhibited phenotypic plasticity in response to infectious or noxious agents, characterized by substantially lower expression of the transcription factor GATA-3 and a concomitant switch to being ILC1 cells that produced interferon-γ (IFN-γ). Interleukin 12 (IL-12) and IL-18 regulated this conversion, and during viral infection, ILC2 cells clustered within inflamed areas and acquired an ILC1-like phenotype. Mechanistically, these ILC1 cells augmented virus-induced inflammation in a manner dependent on the transcription factor T-bet. Notably, IL-12 converted human ILC2 cells into ILC1 cells, and the frequency of ILC1 cells in patients with chronic obstructive pulmonary disease (COPD) correlated with disease severity and susceptibility to exacerbations. Thus, functional plasticity of ILC2 cells exacerbates anti-viral immunity, which may have adverse consequences in respiratory diseases such as COPD.


Assuntos
Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Vírus da Influenza A/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Células Th1/imunologia , Células Th2/imunologia , Idoso , Animais , Diferenciação Celular , Plasticidade Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Fumar/efeitos adversos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
16.
Cancer Lett ; 375(2): 384-389, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27000989

RESUMO

Treatment of high-risk childhood neuroblastoma is a clinical challenge which has been hampered by a lack of reliable neuroblastoma mouse models for preclinical drug testing. We have previously established invasive and metastasising patient-derived orthotopic xenografts (PDXs) from high-risk neuroblastomas that retained the genotypes and phenotypes of patient tumours. Given the important role of the tumour microenvironment in tumour progression, metastasis, and treatment responses, here we analysed the tumour microenvironment of five neuroblastoma PDXs in detail. The PDXs resembled their parent tumours and retained important stromal hallmarks of aggressive lesions including rich blood and lymphatic vascularisation, pericyte coverage, high numbers of cancer-associated fibroblasts, tumour-associated macrophages, and extracellular matrix components. Patient-derived tumour endothelial cells occasionally formed blood vessels in PDXs; however, tumour stroma was, overall, of murine origin. Lymphoid cells and lymphatic endothelial cells were found in athymic nude mice but not in NSG mice; thus, the choice of mouse strain dictates tumour microenvironmental components. The murine tumour microenvironment of orthotopic neuroblastoma PDXs reflects important hallmarks of aggressive and metastatic clinical neuroblastomas. Neuroblastoma PDXs are clinically relevant models for preclinical drug testing.


Assuntos
Vasos Sanguíneos/patologia , Neovascularização Patológica/genética , Neuroblastoma/genética , Microambiente Tumoral/genética , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Neovascularização Patológica/patologia , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Am J Respir Crit Care Med ; 192(4): 428-37, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26039632

RESUMO

RATIONALE: Nontypeable Haemophilus influenzae (NTHi) causes acute exacerbation of chronic obstructive pulmonary disease (AECOPD). IL-17A is central for neutrophilic inflammation and has been linked to COPD pathogenesis. OBJECTIVES: We investigated whether IL-17A is elevated in NTHi-associated AECOPD and required for NTHi-exacerbated pulmonary neutrophilia induced by cigarette smoke. METHODS: Experimental studies with cigarette smoke and NTHi infection were pursued in gene-targeted mice and using antibody intervention. IL-17A was measured in sputum collected from patients with COPD at baseline, during, and after AECOPD. MEASUREMENTS AND MAIN RESULTS: Exacerbated airway neutrophilia in cigarette smoke-exposed mice infected with NTHi was associated with an induction of IL-17A. In agreement, elevated IL-17A was observed in sputum collected during NTHi-associated AECOPD, compared with samples collected before or after the event. NTHi-exacerbated neutrophilia and induction of neutrophil chemoattractants over the background of cigarette smoke, as observed in wild-type mice, was absent in Il17a(-/-) mice and in mice treated with a neutralizing anti-IL-17A antibody. Further studies revealed that IL-1 receptor (R)1 signaling was required for IL-17A-dependent neutrophilia. Moreover, deficiency or therapeutic neutralization of IL-17A did not increase bacterial burden or delay bacterial clearance. CONCLUSIONS: IL-17A is induced during NTHi-associated AECOPD. Functionally, IL-1R1-dependent IL-17A is required for NTHi-exacerbated pulmonary neutrophilia induced by cigarette smoke. Targeting IL-17A in AECOPD may thus be beneficial to reduce neutrophil recruitment to the airways.


Assuntos
Infecções por Haemophilus/metabolismo , Haemophilus influenzae , Interleucina-17/metabolismo , Neutrófilos/fisiologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Animais , Modelos Animais de Doenças , Feminino , Infecções por Haemophilus/complicações , Humanos , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Infiltração de Neutrófilos , Fumar/efeitos adversos
18.
Am J Respir Crit Care Med ; 191(11): 1232-41, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844618

RESUMO

RATIONALE: End-stage chronic obstructive pulmonary disease (COPD) is associated with an accumulation of pulmonary lymphoid follicles. IL-17A is implicated in COPD and pulmonary lymphoid neogenesis in response to microbial stimuli. We hypothesized that IL-17A is increased in peripheral lung tissue during end-stage COPD and also directly contributes to cigarette smoke-induced lymphoid neogenesis. OBJECTIVES: To characterize the tissue expression and functional role of IL-17A in end-stage COPD. METHODS: Automated immune detection of IL-17A and IL-17F was performed in lung tissue specimens collected from patients with Global Initiative for Chronic Obstructive Lung Disease stage I-IV COPD, and smoking and never-smoking control subjects. In parallel, Il17a(-/-) mice and wild-type control animals were exposed to cigarette smoke for 24 weeks, and pulmonary lymphoid neogenesis was assessed. MEASUREMENTS AND MAIN RESULTS: Tissue expression of IL-17A and IL-17F was increased in COPD and correlated with lung function decline. IL-17A was significantly elevated in severe to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease III/IV) compared with both smokers and never-smokers without COPD. Although CD3(+) T cells expressed IL-17A in very severe COPD, most IL-17A(+) cells were identified as tryptase-positive mast cells. Attenuated lymphoid neogenesis and reduced expression of the B-cell attracting chemokine C-X-C motif ligand (CXCL) 12 was observed in cigarette smoke-exposed Il17a(-/-) mice. CXCL12 was also highly expressed in lymphoid follicles in COPD lungs, and the pulmonary expression was significantly elevated in end-stage COPD. CONCLUSIONS: IL-17A in the peripheral lung of patients with severe to very severe COPD may contribute to disease progression and development of lymphoid follicles via activation of CXCL12.


Assuntos
Interleucina-17/imunologia , Pulmão/patologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/efeitos adversos , Idoso , Animais , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
19.
Immunity ; 42(3): 566-79, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25786179

RESUMO

Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease and is presumed to be central to the altered responsiveness to recurrent infection in these patients. We examined the effects of smoke priming underlying the exacerbated response to viral infection in mice. Lack of interleukin-33 (IL-33) signaling conferred complete protection during exacerbation and prevented enhanced inflammation and exaggerated weight loss. Mechanistically, smoke was required to upregulate epithelial-derived IL-33 and simultaneously alter the distribution of the IL-33 receptor ST2. Specifically, smoke decreased ST2 expression on group 2 innate lymphoid cells (ILC2s) while elevating ST2 expression on macrophages and natural killer (NK) cells, thus altering IL-33 responsiveness within the lung. Consequently, upon infection and release, increased local IL-33 significantly amplified type I proinflammatory responses via synergistic modulation of macrophage and NK cell function. Therefore, in COPD, smoke alters the lung microenvironment to facilitate an alternative IL-33-dependent exaggerated proinflammatory response to infection, exacerbating disease.


Assuntos
Imunidade Inata/efeitos dos fármacos , Interleucinas/imunologia , Infecções por Orthomyxoviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Receptores de Interleucina/imunologia , Fumaça/efeitos adversos , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Vírus da Influenza A/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/deficiência , Interleucinas/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos Transgênicos , Infecções por Orthomyxoviridae/etiologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Transdução de Sinais , Redução de Peso
20.
Neurochem Res ; 39(6): 1037-47, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23934212

RESUMO

Kinins are potent pro-inflammatory peptides that act through two G protein-coupled receptor subtypes, B1 (B1R) and B2 (B2R). Kinin-stimulated B2R signaling is often transient, whereas B1R signaling is sustained. This was confirmed by monitoring agonist-stimulated intracellular Ca(2+) mobilization in A10 smooth muscle cells expressing human wild-type B2R and B1R. We further studied the role of receptor membrane trafficking in receptor-mediated phosphoinositide (PI) hydrolysis in model HEK293 cell lines stably expressing the receptors. Treatment of cells with brefeldin A, to inhibit maturation of de novo synthesized receptors, or hypertonic sucrose, to inhibit receptor endocytosis, showed that the basal cell surface receptor turnover was considerably faster for B1R than for B2R. Inhibition of endocytosis, which stabilized B1R on the cell surface, inhibited B1R signaling, whereas B2R signaling was not perturbed. Signaling by a B1R construct in which the entire C-terminal domain was deleted remained sensitive to inhibition of receptor endocytosis, whereas signaling by a B1R construct in which this domain was substituted with the corresponding domain in B2R was not sensitive. B2R and B1R co-expression, which also appeared to stabilize B1R on the cell surface, presumably by receptor hetero-dimerization, also inhibited B1R signaling, whereas B2R signaling was slightly enhanced. Furthermore, the B2R-specific agonist bradykinin (BK) directed both receptors through a common endocytic pathway, whereas the B1R-specific agonist Lys-desArg(9)-BK was unable to do so. These results suggest that B1R-mediated PI hydrolysis depends on a step in receptor endocytosis, whereas B2R-mediated PI hydrolysis does not. We propose that B1R uses at least part of the endocytic machinery to sustain agonist-promoted signaling.


Assuntos
Bradicinina/farmacologia , Endocitose/fisiologia , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Transdução de Sinais/fisiologia , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Receptor B1 da Bradicinina/agonistas , Receptor B2 da Bradicinina/agonistas , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...